Metamath Proof Explorer


Theorem istermoi

Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses isinitoi.b B=BaseC
isinitoi.h H=HomC
isinitoi.c φCCat
Assertion istermoi φOTermOCOBbB∃!hhbHO

Proof

Step Hyp Ref Expression
1 isinitoi.b B=BaseC
2 isinitoi.h H=HomC
3 isinitoi.c φCCat
4 3 1 2 termoval φTermOC=aB|bB∃!hhbHa
5 4 eleq2d φOTermOCOaB|bB∃!hhbHa
6 elrabi OaB|bB∃!hhbHaOB
7 5 6 biimtrdi φOTermOCOB
8 7 imp φOTermOCOB
9 3 adantr φOBCCat
10 simpr φOBOB
11 1 2 9 10 istermo φOBOTermOCbB∃!hhbHO
12 11 biimpd φOBOTermOCbB∃!hhbHO
13 12 impancom φOTermOCOBbB∃!hhbHO
14 8 13 jcai φOTermOCOBbB∃!hhbHO