Step |
Hyp |
Ref |
Expression |
1 |
|
tgpsubcn.2 |
|
2 |
|
tgpsubcn.3 |
|
3 |
|
tgpgrp |
|
4 |
|
tgptps |
|
5 |
1 2
|
tgpsubcn |
|
6 |
3 4 5
|
3jca |
|
7 |
|
simp1 |
|
8 |
|
grpmnd |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
simp2 |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
7
|
3ad2ant1 |
|
15 |
|
simp2 |
|
16 |
|
simp3 |
|
17 |
11 12 2 13 14 15 16
|
grpsubinv |
|
18 |
17
|
mpoeq3dva |
|
19 |
|
eqid |
|
20 |
11 12 19
|
plusffval |
|
21 |
18 20
|
eqtr4di |
|
22 |
11 1
|
istps |
|
23 |
10 22
|
sylib |
|
24 |
23 23
|
cnmpt1st |
|
25 |
23 23
|
cnmpt2nd |
|
26 |
11 13
|
grpinvf |
|
27 |
26
|
3ad2ant1 |
|
28 |
27
|
feqmptd |
|
29 |
|
eqid |
|
30 |
11 2 13 29
|
grpinvval2 |
|
31 |
7 30
|
sylan |
|
32 |
31
|
mpteq2dva |
|
33 |
28 32
|
eqtrd |
|
34 |
11 29
|
grpidcl |
|
35 |
34
|
3ad2ant1 |
|
36 |
23 23 35
|
cnmptc |
|
37 |
23
|
cnmptid |
|
38 |
|
simp3 |
|
39 |
23 36 37 38
|
cnmpt12f |
|
40 |
33 39
|
eqeltrd |
|
41 |
23 23 25 40
|
cnmpt21f |
|
42 |
23 23 24 41 38
|
cnmpt22f |
|
43 |
21 42
|
eqeltrrd |
|
44 |
19 1
|
istmd |
|
45 |
9 10 43 44
|
syl3anbrc |
|
46 |
1 13
|
istgp |
|
47 |
7 45 40 46
|
syl3anbrc |
|
48 |
6 47
|
impbii |
|