Metamath Proof Explorer


Theorem isthinc

Description: The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthinc.b B = Base C
isthinc.h H = Hom C
Assertion isthinc C ThinCat C Cat x B y B * f f x H y

Proof

Step Hyp Ref Expression
1 isthinc.b B = Base C
2 isthinc.h H = Hom C
3 fvexd c = C Base c V
4 fveq2 c = C Base c = Base C
5 4 1 eqtr4di c = C Base c = B
6 fvexd c = C b = B Hom c V
7 fveq2 c = C Hom c = Hom C
8 7 2 eqtr4di c = C Hom c = H
9 8 adantr c = C b = B Hom c = H
10 raleq b = B y b * f f x h y y B * f f x h y
11 10 raleqbi1dv b = B x b y b * f f x h y x B y B * f f x h y
12 11 ad2antlr c = C b = B h = H x b y b * f f x h y x B y B * f f x h y
13 oveq h = H x h y = x H y
14 13 eleq2d h = H f x h y f x H y
15 14 mobidv h = H * f f x h y * f f x H y
16 15 2ralbidv h = H x B y B * f f x h y x B y B * f f x H y
17 16 adantl c = C b = B h = H x B y B * f f x h y x B y B * f f x H y
18 12 17 bitrd c = C b = B h = H x b y b * f f x h y x B y B * f f x H y
19 6 9 18 sbcied2 c = C b = B [˙ Hom c / h]˙ x b y b * f f x h y x B y B * f f x H y
20 3 5 19 sbcied2 c = C [˙Base c / b]˙ [˙ Hom c / h]˙ x b y b * f f x h y x B y B * f f x H y
21 df-thinc ThinCat = c Cat | [˙Base c / b]˙ [˙ Hom c / h]˙ x b y b * f f x h y
22 20 21 elrab2 C ThinCat C Cat x B y B * f f x H y