Metamath Proof Explorer


Theorem isthincd

Description: The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Hypotheses isthincd.b φ B = Base C
isthincd.h φ H = Hom C
isthincd.t φ x B y B * f f x H y
isthincd.c φ C Cat
Assertion isthincd φ C ThinCat

Proof

Step Hyp Ref Expression
1 isthincd.b φ B = Base C
2 isthincd.h φ H = Hom C
3 isthincd.t φ x B y B * f f x H y
4 isthincd.c φ C Cat
5 3 ralrimivva φ x B y B * f f x H y
6 2 oveqd φ x H y = x Hom C y
7 6 eleq2d φ f x H y f x Hom C y
8 7 mobidv φ * f f x H y * f f x Hom C y
9 1 8 raleqbidv φ y B * f f x H y y Base C * f f x Hom C y
10 1 9 raleqbidv φ x B y B * f f x H y x Base C y Base C * f f x Hom C y
11 5 10 mpbid φ x Base C y Base C * f f x Hom C y
12 eqid Base C = Base C
13 eqid Hom C = Hom C
14 12 13 isthinc C ThinCat C Cat x Base C y Base C * f f x Hom C y
15 4 11 14 sylanbrc φ C ThinCat