Metamath Proof Explorer


Theorem istop2g

Description: Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg . (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion istop2g J A J Top x x J x J x x J x x Fin x J

Proof

Step Hyp Ref Expression
1 istopg J A J Top x x J x J x J y J x y J
2 fiint x J y J x y J x x J x x Fin x J
3 2 anbi2i x x J x J x J y J x y J x x J x J x x J x x Fin x J
4 1 3 bitrdi J A J Top x x J x J x x J x x Fin x J