Metamath Proof Explorer


Theorem istopg

Description: Express the predicate " J is a topology". See istop2g for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion istopg J A J Top x x J x J x J y J x y J

Proof

Step Hyp Ref Expression
1 pweq z = J 𝒫 z = 𝒫 J
2 eleq2 z = J x z x J
3 1 2 raleqbidv z = J x 𝒫 z x z x 𝒫 J x J
4 eleq2 z = J x y z x y J
5 4 raleqbi1dv z = J y z x y z y J x y J
6 5 raleqbi1dv z = J x z y z x y z x J y J x y J
7 3 6 anbi12d z = J x 𝒫 z x z x z y z x y z x 𝒫 J x J x J y J x y J
8 df-top Top = z | x 𝒫 z x z x z y z x y z
9 7 8 elab2g J A J Top x 𝒫 J x J x J y J x y J
10 df-ral x 𝒫 J x J x x 𝒫 J x J
11 elpw2g J A x 𝒫 J x J
12 11 imbi1d J A x 𝒫 J x J x J x J
13 12 albidv J A x x 𝒫 J x J x x J x J
14 10 13 syl5bb J A x 𝒫 J x J x x J x J
15 14 anbi1d J A x 𝒫 J x J x J y J x y J x x J x J x J y J x y J
16 9 15 bitrd J A J Top x x J x J x J y J x y J