Step |
Hyp |
Ref |
Expression |
1 |
|
istotbnd |
|
2 |
|
oveq1 |
|
3 |
2
|
eqeq2d |
|
4 |
3
|
ac6sfi |
|
5 |
4
|
ex |
|
6 |
5
|
ad2antlr |
|
7 |
|
simprrl |
|
8 |
7
|
frnd |
|
9 |
|
simplr |
|
10 |
7
|
ffnd |
|
11 |
|
dffn4 |
|
12 |
10 11
|
sylib |
|
13 |
|
fofi |
|
14 |
9 12 13
|
syl2anc |
|
15 |
|
elfpw |
|
16 |
8 14 15
|
sylanbrc |
|
17 |
2
|
eleq2d |
|
18 |
17
|
rexrn |
|
19 |
10 18
|
syl |
|
20 |
|
eliun |
|
21 |
|
eliun |
|
22 |
19 20 21
|
3bitr4g |
|
23 |
22
|
eqrdv |
|
24 |
|
simprrr |
|
25 |
|
iuneq2 |
|
26 |
24 25
|
syl |
|
27 |
|
uniiun |
|
28 |
|
simprl |
|
29 |
27 28
|
eqtr3id |
|
30 |
23 26 29
|
3eqtr2d |
|
31 |
|
iuneq1 |
|
32 |
31
|
eqeq1d |
|
33 |
32
|
rspcev |
|
34 |
16 30 33
|
syl2anc |
|
35 |
34
|
expr |
|
36 |
35
|
exlimdv |
|
37 |
6 36
|
syld |
|
38 |
37
|
expimpd |
|
39 |
38
|
rexlimdva |
|
40 |
|
elfpw |
|
41 |
40
|
simprbi |
|
42 |
41
|
ad2antrl |
|
43 |
|
mptfi |
|
44 |
|
rnfi |
|
45 |
42 43 44
|
3syl |
|
46 |
|
ovex |
|
47 |
46
|
dfiun3 |
|
48 |
|
simprr |
|
49 |
47 48
|
eqtr3id |
|
50 |
|
eqid |
|
51 |
50
|
rnmpt |
|
52 |
40
|
simplbi |
|
53 |
52
|
ad2antrl |
|
54 |
|
ssrexv |
|
55 |
53 54
|
syl |
|
56 |
55
|
ss2abdv |
|
57 |
51 56
|
eqsstrid |
|
58 |
|
unieq |
|
59 |
58
|
eqeq1d |
|
60 |
|
ssabral |
|
61 |
|
sseq1 |
|
62 |
60 61
|
bitr3id |
|
63 |
59 62
|
anbi12d |
|
64 |
63
|
rspcev |
|
65 |
45 49 57 64
|
syl12anc |
|
66 |
65
|
expr |
|
67 |
66
|
rexlimdva |
|
68 |
39 67
|
impbid |
|
69 |
68
|
ralbidv |
|
70 |
69
|
pm5.32i |
|
71 |
1 70
|
bitri |
|