Metamath Proof Explorer


Theorem istps2

Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istps.a A = Base K
istps.j J = TopOpen K
Assertion istps2 K TopSp J Top A = J

Proof

Step Hyp Ref Expression
1 istps.a A = Base K
2 istps.j J = TopOpen K
3 1 2 istps K TopSp J TopOn A
4 istopon J TopOn A J Top A = J
5 3 4 bitri K TopSp J Top A = J