Database
BASIC TOPOLOGY
Topology
Topological spaces
Topological spaces
istps2
Next ⟩
tpsuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
istps2
Description:
Express the predicate "is a topological space."
(Contributed by
NM
, 20-Oct-2012)
Ref
Expression
Hypotheses
istps.a
⊢
A
=
Base
K
istps.j
⊢
J
=
TopOpen
⁡
K
Assertion
istps2
⊢
K
∈
TopSp
↔
J
∈
Top
∧
A
=
⋃
J
Proof
Step
Hyp
Ref
Expression
1
istps.a
⊢
A
=
Base
K
2
istps.j
⊢
J
=
TopOpen
⁡
K
3
1
2
istps
⊢
K
∈
TopSp
↔
J
∈
TopOn
⁡
A
4
istopon
⊢
J
∈
TopOn
⁡
A
↔
J
∈
Top
∧
A
=
⋃
J
5
3
4
bitri
⊢
K
∈
TopSp
↔
J
∈
Top
∧
A
=
⋃
J