Metamath Proof Explorer


Theorem istpsi

Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istpsi.b Base K = A
istpsi.j TopOpen K = J
istpsi.1 A = J
istpsi.2 J Top
Assertion istpsi K TopSp

Proof

Step Hyp Ref Expression
1 istpsi.b Base K = A
2 istpsi.j TopOpen K = J
3 istpsi.1 A = J
4 istpsi.2 J Top
5 1 eqcomi A = Base K
6 2 eqcomi J = TopOpen K
7 5 6 istps2 K TopSp J Top A = J
8 4 3 7 mpbir2an K TopSp