Metamath Proof Explorer


Theorem istrg

Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis istrg.1 M = mulGrp R
Assertion istrg R TopRing R TopGrp R Ring M TopMnd

Proof

Step Hyp Ref Expression
1 istrg.1 M = mulGrp R
2 elin R TopGrp Ring R TopGrp R Ring
3 2 anbi1i R TopGrp Ring M TopMnd R TopGrp R Ring M TopMnd
4 fveq2 r = R mulGrp r = mulGrp R
5 4 1 eqtr4di r = R mulGrp r = M
6 5 eleq1d r = R mulGrp r TopMnd M TopMnd
7 df-trg TopRing = r TopGrp Ring | mulGrp r TopMnd
8 6 7 elrab2 R TopRing R TopGrp Ring M TopMnd
9 df-3an R TopGrp R Ring M TopMnd R TopGrp R Ring M TopMnd
10 3 8 9 3bitr4i R TopRing R TopGrp R Ring M TopMnd