Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
|
2 |
|
istrkg.d |
|
3 |
|
istrkg.i |
|
4 |
|
simpl |
|
5 |
4
|
eqcomd |
|
6 |
5
|
adantr |
|
7 |
|
simpllr |
|
8 |
7
|
eqcomd |
|
9 |
8
|
oveqd |
|
10 |
9
|
eleq2d |
|
11 |
10
|
imbi1d |
|
12 |
6 11
|
raleqbidva |
|
13 |
5 12
|
raleqbidva |
|
14 |
6
|
adantr |
|
15 |
14
|
adantr |
|
16 |
15
|
adantr |
|
17 |
|
simp-6r |
|
18 |
17
|
eqcomd |
|
19 |
18
|
oveqd |
|
20 |
19
|
eleq2d |
|
21 |
18
|
oveqd |
|
22 |
21
|
eleq2d |
|
23 |
20 22
|
anbi12d |
|
24 |
16
|
adantr |
|
25 |
18
|
oveqdr |
|
26 |
25
|
eleq2d |
|
27 |
18
|
oveqdr |
|
28 |
27
|
eleq2d |
|
29 |
26 28
|
anbi12d |
|
30 |
24 29
|
rexeqbidva |
|
31 |
23 30
|
imbi12d |
|
32 |
16 31
|
raleqbidva |
|
33 |
15 32
|
raleqbidva |
|
34 |
14 33
|
raleqbidva |
|
35 |
6 34
|
raleqbidva |
|
36 |
5 35
|
raleqbidva |
|
37 |
5
|
pweqd |
|
38 |
37
|
adantr |
|
39 |
5
|
ad2antrr |
|
40 |
|
simp-4r |
|
41 |
40
|
eqcomd |
|
42 |
41
|
oveqd |
|
43 |
42
|
eleq2d |
|
44 |
43
|
2ralbidv |
|
45 |
39 44
|
rexeqbidva |
|
46 |
|
simp-4r |
|
47 |
46
|
eqcomd |
|
48 |
47
|
oveqd |
|
49 |
48
|
eleq2d |
|
50 |
49
|
2ralbidv |
|
51 |
39 50
|
rexeqbidva |
|
52 |
45 51
|
imbi12d |
|
53 |
38 52
|
raleqbidva |
|
54 |
37 53
|
raleqbidva |
|
55 |
13 36 54
|
3anbi123d |
|
56 |
1 3 55
|
sbcie2s |
|
57 |
|
df-trkgb |
|
58 |
56 57
|
elab4g |
|