Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg.p |
|
2 |
|
istrkg.d |
|
3 |
|
istrkg.i |
|
4 |
|
simp1 |
|
5 |
4
|
eqcomd |
|
6 |
5
|
adantr |
|
7 |
6
|
adantr |
|
8 |
7
|
adantr |
|
9 |
8
|
adantr |
|
10 |
9
|
adantr |
|
11 |
5
|
ad6antr |
|
12 |
6
|
ad6antr |
|
13 |
|
simpll3 |
|
14 |
13
|
ad6antr |
|
15 |
14
|
eqcomd |
|
16 |
15
|
oveqd |
|
17 |
16
|
eleq2d |
|
18 |
15
|
oveqd |
|
19 |
18
|
eleq2d |
|
20 |
17 19
|
3anbi23d |
|
21 |
|
simpll2 |
|
22 |
21
|
ad6antr |
|
23 |
22
|
eqcomd |
|
24 |
23
|
oveqd |
|
25 |
23
|
oveqd |
|
26 |
24 25
|
eqeq12d |
|
27 |
23
|
oveqd |
|
28 |
23
|
oveqd |
|
29 |
27 28
|
eqeq12d |
|
30 |
26 29
|
anbi12d |
|
31 |
23
|
oveqd |
|
32 |
23
|
oveqd |
|
33 |
31 32
|
eqeq12d |
|
34 |
23
|
oveqd |
|
35 |
23
|
oveqd |
|
36 |
34 35
|
eqeq12d |
|
37 |
33 36
|
anbi12d |
|
38 |
30 37
|
anbi12d |
|
39 |
20 38
|
anbi12d |
|
40 |
23
|
oveqd |
|
41 |
23
|
oveqd |
|
42 |
40 41
|
eqeq12d |
|
43 |
39 42
|
imbi12d |
|
44 |
12 43
|
raleqbidva |
|
45 |
11 44
|
raleqbidva |
|
46 |
10 45
|
raleqbidva |
|
47 |
9 46
|
raleqbidva |
|
48 |
8 47
|
raleqbidva |
|
49 |
7 48
|
raleqbidva |
|
50 |
6 49
|
raleqbidva |
|
51 |
5 50
|
raleqbidva |
|
52 |
7
|
adantr |
|
53 |
52
|
adantr |
|
54 |
13
|
ad3antrrr |
|
55 |
54
|
eqcomd |
|
56 |
55
|
oveqd |
|
57 |
56
|
eleq2d |
|
58 |
21
|
ad3antrrr |
|
59 |
58
|
eqcomd |
|
60 |
59
|
oveqd |
|
61 |
59
|
oveqd |
|
62 |
60 61
|
eqeq12d |
|
63 |
57 62
|
anbi12d |
|
64 |
53 63
|
rexeqbidva |
|
65 |
52 64
|
raleqbidva |
|
66 |
7 65
|
raleqbidva |
|
67 |
6 66
|
raleqbidva |
|
68 |
5 67
|
raleqbidva |
|
69 |
51 68
|
anbi12d |
|
70 |
1 2 3 69
|
sbcie3s |
|
71 |
|
df-trkgcb |
|
72 |
70 71
|
elab4g |
|