Metamath Proof Explorer


Theorem istrkge

Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses istrkg.p P = Base G
istrkg.d - ˙ = dist G
istrkg.i I = Itv G
Assertion istrkge G 𝒢 Tarski E G V x P y P z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b

Proof

Step Hyp Ref Expression
1 istrkg.p P = Base G
2 istrkg.d - ˙ = dist G
3 istrkg.i I = Itv G
4 simpl p = P i = I p = P
5 simpr p = P i = I i = I
6 5 oveqd p = P i = I x i v = x I v
7 6 eleq2d p = P i = I u x i v u x I v
8 5 oveqd p = P i = I y i z = y I z
9 8 eleq2d p = P i = I u y i z u y I z
10 7 9 3anbi12d p = P i = I u x i v u y i z x u u x I v u y I z x u
11 5 oveqd p = P i = I x i a = x I a
12 11 eleq2d p = P i = I y x i a y x I a
13 5 oveqd p = P i = I x i b = x I b
14 13 eleq2d p = P i = I z x i b z x I b
15 5 oveqd p = P i = I a i b = a I b
16 15 eleq2d p = P i = I v a i b v a I b
17 12 14 16 3anbi123d p = P i = I y x i a z x i b v a i b y x I a z x I b v a I b
18 4 17 rexeqbidv p = P i = I b p y x i a z x i b v a i b b P y x I a z x I b v a I b
19 4 18 rexeqbidv p = P i = I a p b p y x i a z x i b v a i b a P b P y x I a z x I b v a I b
20 10 19 imbi12d p = P i = I u x i v u y i z x u a p b p y x i a z x i b v a i b u x I v u y I z x u a P b P y x I a z x I b v a I b
21 4 20 raleqbidv p = P i = I v p u x i v u y i z x u a p b p y x i a z x i b v a i b v P u x I v u y I z x u a P b P y x I a z x I b v a I b
22 4 21 raleqbidv p = P i = I u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b
23 4 22 raleqbidv p = P i = I z p u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b
24 4 23 raleqbidv p = P i = I y p z p u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b y P z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b
25 4 24 raleqbidv p = P i = I x p y p z p u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b x P y P z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b
26 1 3 25 sbcie2s f = G [˙Base f / p]˙ [˙ Itv f / i]˙ x p y p z p u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b x P y P z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b
27 df-trkge 𝒢 Tarski E = f | [˙Base f / p]˙ [˙ Itv f / i]˙ x p y p z p u p v p u x i v u y i z x u a p b p y x i a z x i b v a i b
28 26 27 elab4g G 𝒢 Tarski E G V x P y P z P u P v P u x I v u y I z x u a P b P y x I a z x I b v a I b