Description: Property of fulfilling Euclid's axiom. (Contributed by Thierry Arnoux, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istrkg.p | |
|
| istrkg.d | |
||
| istrkg.i | |
||
| Assertion | istrkge | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrkg.p | |
|
| 2 | istrkg.d | |
|
| 3 | istrkg.i | |
|
| 4 | simpl | |
|
| 5 | simpr | |
|
| 6 | 5 | oveqd | |
| 7 | 6 | eleq2d | |
| 8 | 5 | oveqd | |
| 9 | 8 | eleq2d | |
| 10 | 7 9 | 3anbi12d | |
| 11 | 5 | oveqd | |
| 12 | 11 | eleq2d | |
| 13 | 5 | oveqd | |
| 14 | 13 | eleq2d | |
| 15 | 5 | oveqd | |
| 16 | 15 | eleq2d | |
| 17 | 12 14 16 | 3anbi123d | |
| 18 | 4 17 | rexeqbidv | |
| 19 | 4 18 | rexeqbidv | |
| 20 | 10 19 | imbi12d | |
| 21 | 4 20 | raleqbidv | |
| 22 | 4 21 | raleqbidv | |
| 23 | 4 22 | raleqbidv | |
| 24 | 4 23 | raleqbidv | |
| 25 | 4 24 | raleqbidv | |
| 26 | 1 3 25 | sbcie2s | |
| 27 | df-trkge | |
|
| 28 | 26 27 | elab4g | |