Metamath Proof Explorer


Theorem istrlson

Description: Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017) (Revised by AV, 7-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis trlsonfval.v V = Vtx G
Assertion istrlson A V B V F U P Z F A TrailsOn G B P F A WalksOn G B P F Trails G P

Proof

Step Hyp Ref Expression
1 trlsonfval.v V = Vtx G
2 1 trlsonfval A V B V A TrailsOn G B = f p | f A WalksOn G B p f Trails G p
3 2 breqd A V B V F A TrailsOn G B P F f p | f A WalksOn G B p f Trails G p P
4 breq12 f = F p = P f A WalksOn G B p F A WalksOn G B P
5 breq12 f = F p = P f Trails G p F Trails G P
6 4 5 anbi12d f = F p = P f A WalksOn G B p f Trails G p F A WalksOn G B P F Trails G P
7 eqid f p | f A WalksOn G B p f Trails G p = f p | f A WalksOn G B p f Trails G p
8 6 7 brabga F U P Z F f p | f A WalksOn G B p f Trails G p P F A WalksOn G B P F Trails G P
9 3 8 sylan9bb A V B V F U P Z F A TrailsOn G B P F A WalksOn G B P F Trails G P