Metamath Proof Explorer


Theorem istsr

Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis istsr.1 X = dom R
Assertion istsr R TosetRel R PosetRel X × X R R -1

Proof

Step Hyp Ref Expression
1 istsr.1 X = dom R
2 dmeq r = R dom r = dom R
3 2 1 eqtr4di r = R dom r = X
4 3 sqxpeqd r = R dom r × dom r = X × X
5 id r = R r = R
6 cnveq r = R r -1 = R -1
7 5 6 uneq12d r = R r r -1 = R R -1
8 4 7 sseq12d r = R dom r × dom r r r -1 X × X R R -1
9 df-tsr TosetRel = r PosetRel | dom r × dom r r r -1
10 8 9 elrab2 R TosetRel R PosetRel X × X R R -1