Metamath Proof Explorer


Theorem istsr2

Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis istsr.1 X = dom R
Assertion istsr2 R TosetRel R PosetRel x X y X x R y y R x

Proof

Step Hyp Ref Expression
1 istsr.1 X = dom R
2 1 istsr R TosetRel R PosetRel X × X R R -1
3 qfto X × X R R -1 x X y X x R y y R x
4 3 anbi2i R PosetRel X × X R R -1 R PosetRel x X y X x R y y R x
5 2 4 bitri R TosetRel R PosetRel x X y X x R y y R x