Metamath Proof Explorer


Theorem istvc

Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis tlmtrg.f F = Scalar W
Assertion istvc W TopVec W TopMod F TopDRing

Proof

Step Hyp Ref Expression
1 tlmtrg.f F = Scalar W
2 fveq2 x = W Scalar x = Scalar W
3 2 1 eqtr4di x = W Scalar x = F
4 3 eleq1d x = W Scalar x TopDRing F TopDRing
5 df-tvc TopVec = x TopMod | Scalar x TopDRing
6 4 5 elrab2 W TopVec W TopMod F TopDRing