Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Induced subgraphs
isubgriedg
Next ⟩
isubgrvtxuhgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
isubgriedg
Description:
The edges of an induced subgraph.
(Contributed by
AV
, 12-May-2025)
Ref
Expression
Hypotheses
isubgriedg.v
⊢
V
=
Vtx
⁡
G
isubgriedg.e
⊢
E
=
iEdg
⁡
G
Assertion
isubgriedg
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
G
ISubGr
S
=
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
Proof
Step
Hyp
Ref
Expression
1
isubgriedg.v
⊢
V
=
Vtx
⁡
G
2
isubgriedg.e
⊢
E
=
iEdg
⁡
G
3
1
2
isisubgr
⊢
G
∈
W
∧
S
⊆
V
→
G
ISubGr
S
=
S
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
4
3
fveq2d
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
G
ISubGr
S
=
iEdg
⁡
S
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
5
1
fvexi
⊢
V
∈
V
6
5
ssex
⊢
S
⊆
V
→
S
∈
V
7
2
fvexi
⊢
E
∈
V
8
7
a1i
⊢
G
∈
W
∧
S
⊆
V
→
E
∈
V
9
8
resexd
⊢
G
∈
W
∧
S
⊆
V
→
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
∈
V
10
opiedgfv
⊢
S
∈
V
∧
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
∈
V
→
iEdg
⁡
S
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
=
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
11
6
9
10
syl2an2
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
S
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
=
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S
12
4
11
eqtrd
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
G
ISubGr
S
=
E
↾
x
∈
dom
⁡
E
|
E
⁡
x
⊆
S