Metamath Proof Explorer


Theorem isubgriedg

Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypotheses isubgriedg.v V = Vtx G
isubgriedg.e E = iEdg G
Assertion isubgriedg G W S V iEdg G ISubGr S = E x dom E | E x S

Proof

Step Hyp Ref Expression
1 isubgriedg.v V = Vtx G
2 isubgriedg.e E = iEdg G
3 1 2 isisubgr G W S V G ISubGr S = S E x dom E | E x S
4 3 fveq2d G W S V iEdg G ISubGr S = iEdg S E x dom E | E x S
5 1 fvexi V V
6 5 ssex S V S V
7 2 fvexi E V
8 7 a1i G W S V E V
9 8 resexd G W S V E x dom E | E x S V
10 opiedgfv S V E x dom E | E x S V iEdg S E x dom E | E x S = E x dom E | E x S
11 6 9 10 syl2an2 G W S V iEdg S E x dom E | E x S = E x dom E | E x S
12 4 11 eqtrd G W S V iEdg G ISubGr S = E x dom E | E x S