Metamath Proof Explorer


Theorem isubgrsubgr

Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025)

Ref Expression
Hypothesis isubgrvtx.v V = Vtx G
Assertion isubgrsubgr G UHGraph S V G ISubGr S SubGraph G

Proof

Step Hyp Ref Expression
1 isubgrvtx.v V = Vtx G
2 1 isubgrvtx G UHGraph S V Vtx G ISubGr S = S
3 simpr G UHGraph S V S V
4 2 3 eqsstrd G UHGraph S V Vtx G ISubGr S V
5 eqid iEdg G = iEdg G
6 1 5 isubgriedg G UHGraph S V iEdg G ISubGr S = iEdg G x dom iEdg G | iEdg G x S
7 resss iEdg G x dom iEdg G | iEdg G x S iEdg G
8 6 7 eqsstrdi G UHGraph S V iEdg G ISubGr S iEdg G
9 simpl G UHGraph S V G UHGraph
10 5 uhgrfun G UHGraph Fun iEdg G
11 10 adantr G UHGraph S V Fun iEdg G
12 1 isubgruhgr G UHGraph S V G ISubGr S UHGraph
13 eqid Vtx G ISubGr S = Vtx G ISubGr S
14 eqid iEdg G ISubGr S = iEdg G ISubGr S
15 13 1 14 5 uhgrissubgr G UHGraph Fun iEdg G G ISubGr S UHGraph G ISubGr S SubGraph G Vtx G ISubGr S V iEdg G ISubGr S iEdg G
16 9 11 12 15 syl3anc G UHGraph S V G ISubGr S SubGraph G Vtx G ISubGr S V iEdg G ISubGr S iEdg G
17 4 8 16 mpbir2and G UHGraph S V G ISubGr S SubGraph G