Metamath Proof Explorer


Theorem isubgrvtx

Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025)

Ref Expression
Hypothesis isubgrvtx.v V = Vtx G
Assertion isubgrvtx G W S V Vtx G ISubGr S = S

Proof

Step Hyp Ref Expression
1 isubgrvtx.v V = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 isisubgr G W S V G ISubGr S = S iEdg G x dom iEdg G | iEdg G x S
4 3 fveq2d G W S V Vtx G ISubGr S = Vtx S iEdg G x dom iEdg G | iEdg G x S
5 1 fvexi V V
6 5 ssex S V S V
7 fvexd G W S V iEdg G V
8 7 resexd G W S V iEdg G x dom iEdg G | iEdg G x S V
9 opvtxfv S V iEdg G x dom iEdg G | iEdg G x S V Vtx S iEdg G x dom iEdg G | iEdg G x S = S
10 6 8 9 syl2an2 G W S V Vtx S iEdg G x dom iEdg G | iEdg G x S = S
11 4 10 eqtrd G W S V Vtx G ISubGr S = S