Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Induced subgraphs
isubgrvtx
Next ⟩
isubgruhgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
isubgrvtx
Description:
The vertices of an induced subgraph.
(Contributed by
AV
, 12-May-2025)
Ref
Expression
Hypothesis
isubgrvtx.v
⊢
V
=
Vtx
⁡
G
Assertion
isubgrvtx
⊢
G
∈
W
∧
S
⊆
V
→
Vtx
⁡
G
ISubGr
S
=
S
Proof
Step
Hyp
Ref
Expression
1
isubgrvtx.v
⊢
V
=
Vtx
⁡
G
2
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
3
1
2
isisubgr
⊢
G
∈
W
∧
S
⊆
V
→
G
ISubGr
S
=
S
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
4
3
fveq2d
⊢
G
∈
W
∧
S
⊆
V
→
Vtx
⁡
G
ISubGr
S
=
Vtx
⁡
S
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
5
1
fvexi
⊢
V
∈
V
6
5
ssex
⊢
S
⊆
V
→
S
∈
V
7
fvexd
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
G
∈
V
8
7
resexd
⊢
G
∈
W
∧
S
⊆
V
→
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
∈
V
9
opvtxfv
⊢
S
∈
V
∧
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
∈
V
→
Vtx
⁡
S
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
=
S
10
6
8
9
syl2an2
⊢
G
∈
W
∧
S
⊆
V
→
Vtx
⁡
S
iEdg
⁡
G
↾
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
⊆
S
=
S
11
4
10
eqtrd
⊢
G
∈
W
∧
S
⊆
V
→
Vtx
⁡
G
ISubGr
S
=
S