Step |
Hyp |
Ref |
Expression |
1 |
|
isucn2.u |
|
2 |
|
isucn2.v |
|
3 |
|
isucn2.1 |
|
4 |
|
isucn2.2 |
|
5 |
|
isucn2.3 |
|
6 |
|
isucn2.4 |
|
7 |
|
isucn |
|
8 |
3 4 7
|
syl2anc |
|
9 |
|
breq |
|
10 |
9
|
imbi2d |
|
11 |
10
|
ralbidv |
|
12 |
11
|
rexralbidv |
|
13 |
|
simplr |
|
14 |
|
ssfg |
|
15 |
6 14
|
syl |
|
16 |
15 2
|
sseqtrrdi |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
18
|
sselda |
|
20 |
12 13 19
|
rspcdva |
|
21 |
|
simpr |
|
22 |
21 1
|
eleqtrdi |
|
23 |
|
elfg |
|
24 |
5 23
|
syl |
|
25 |
24
|
simplbda |
|
26 |
22 25
|
syldan |
|
27 |
|
ssbr |
|
28 |
27
|
imim1d |
|
29 |
28
|
adantl |
|
30 |
29
|
ralrimivw |
|
31 |
30
|
ralrimivw |
|
32 |
|
ralim |
|
33 |
32
|
ralimi |
|
34 |
|
ralim |
|
35 |
31 33 34
|
3syl |
|
36 |
35
|
ex |
|
37 |
36
|
reximdva |
|
38 |
37
|
adantr |
|
39 |
26 38
|
mpd |
|
40 |
|
r19.37v |
|
41 |
39 40
|
syl |
|
42 |
41
|
rexlimdva |
|
43 |
42
|
ad3antrrr |
|
44 |
20 43
|
mpd |
|
45 |
44
|
ralrimiva |
|
46 |
|
ssfg |
|
47 |
5 46
|
syl |
|
48 |
47 1
|
sseqtrrdi |
|
49 |
|
ssrexv |
|
50 |
|
breq |
|
51 |
50
|
imbi1d |
|
52 |
51
|
2ralbidv |
|
53 |
52
|
cbvrexvw |
|
54 |
49 53
|
syl6ib |
|
55 |
48 54
|
syl |
|
56 |
55
|
ralimdv |
|
57 |
56
|
adantr |
|
58 |
|
nfv |
|
59 |
|
nfra1 |
|
60 |
58 59
|
nfan |
|
61 |
|
nfv |
|
62 |
60 61
|
nfan |
|
63 |
|
rspa |
|
64 |
63
|
ad5ant24 |
|
65 |
|
simp-4l |
|
66 |
|
simplr |
|
67 |
|
simpr |
|
68 |
|
ssbr |
|
69 |
68
|
adantl |
|
70 |
69
|
imim2d |
|
71 |
70
|
ralimdv |
|
72 |
71
|
ralimdv |
|
73 |
72
|
reximdv |
|
74 |
65 66 67 73
|
syl21anc |
|
75 |
64 74
|
mpd |
|
76 |
6
|
ad3antrrr |
|
77 |
|
simpr |
|
78 |
77 2
|
eleqtrdi |
|
79 |
|
elfg |
|
80 |
79
|
simplbda |
|
81 |
76 78 80
|
syl2anc |
|
82 |
62 75 81
|
r19.29af |
|
83 |
82
|
ralrimiva |
|
84 |
83
|
ex |
|
85 |
57 84
|
syld |
|
86 |
85
|
imp |
|
87 |
45 86
|
impbida |
|
88 |
87
|
pm5.32da |
|
89 |
8 88
|
bitrd |
|