Metamath Proof Explorer


Theorem isufd2

Description: Alternate definition of unique factorization domains, using integral domains, for nonzero rings. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses isufd2.1 No typesetting found for |- I = ( PrmIdeal ` R ) with typecode |-
isufd2.2 P = RPrime R
isufd2.3 0 ˙ = 0 R
Assertion isufd2 Could not format assertion : No typesetting found for |- ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 isufd2.1 Could not format I = ( PrmIdeal ` R ) : No typesetting found for |- I = ( PrmIdeal ` R ) with typecode |-
2 isufd2.2 P = RPrime R
3 isufd2.3 0 ˙ = 0 R
4 eqid AbsVal R = AbsVal R
5 4 1 2 3 isufd Could not format ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) : No typesetting found for |- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) with typecode |-
6 isidom R IDomn R CRing R Domn
7 4 abvn0b R Domn R NzRing AbsVal R
8 7 baib R NzRing R Domn AbsVal R
9 8 anbi2d R NzRing R CRing R Domn R CRing AbsVal R
10 6 9 bitrid R NzRing R IDomn R CRing AbsVal R
11 10 anbi1d R NzRing R IDomn i I 0 ˙ i P R CRing AbsVal R i I 0 ˙ i P
12 anass R CRing AbsVal R i I 0 ˙ i P R CRing AbsVal R i I 0 ˙ i P
13 11 12 bitr2di R NzRing R CRing AbsVal R i I 0 ˙ i P R IDomn i I 0 ˙ i P
14 5 13 bitrid Could not format ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) : No typesetting found for |- ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) with typecode |-