Metamath Proof Explorer


Theorem isufil

Description: The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion isufil F UFil X F Fil X x 𝒫 X x F X x F

Proof

Step Hyp Ref Expression
1 df-ufil UFil = y V z Fil y | x 𝒫 y x z y x z
2 pweq y = X 𝒫 y = 𝒫 X
3 2 adantr y = X z = F 𝒫 y = 𝒫 X
4 eleq2 z = F x z x F
5 4 adantl y = X z = F x z x F
6 difeq1 y = X y x = X x
7 eleq12 y x = X x z = F y x z X x F
8 6 7 sylan y = X z = F y x z X x F
9 5 8 orbi12d y = X z = F x z y x z x F X x F
10 3 9 raleqbidv y = X z = F x 𝒫 y x z y x z x 𝒫 X x F X x F
11 fveq2 y = X Fil y = Fil X
12 fvex Fil y V
13 elfvdm F Fil X X dom Fil
14 1 10 11 12 13 elmptrab2 F UFil X F Fil X x 𝒫 X x F X x F