Metamath Proof Explorer


Theorem isufl

Description: Define the (strong) ultrafilter lemma, parameterized over base sets. A set X satisfies the ultrafilter lemma if every filter on X is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion isufl X V X UFL f Fil X g UFil X f g

Proof

Step Hyp Ref Expression
1 fveq2 x = X Fil x = Fil X
2 fveq2 x = X UFil x = UFil X
3 2 rexeqdv x = X g UFil x f g g UFil X f g
4 1 3 raleqbidv x = X f Fil x g UFil x f g f Fil X g UFil X f g
5 df-ufl UFL = x | f Fil x g UFil x f g
6 4 5 elab2g X V X UFL f Fil X g UFil X f g