Metamath Proof Explorer


Theorem isuhgrop

Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 1-Jan-2020) (Revised by AV, 9-Oct-2020)

Ref Expression
Assertion isuhgrop VWEXVEUHGraphE:domE𝒫V

Proof

Step Hyp Ref Expression
1 opex VEV
2 eqid VtxVE=VtxVE
3 eqid iEdgVE=iEdgVE
4 2 3 isuhgr VEVVEUHGraphiEdgVE:domiEdgVE𝒫VtxVE
5 1 4 mp1i VWEXVEUHGraphiEdgVE:domiEdgVE𝒫VtxVE
6 opiedgfv VWEXiEdgVE=E
7 6 dmeqd VWEXdomiEdgVE=domE
8 opvtxfv VWEXVtxVE=V
9 8 pweqd VWEX𝒫VtxVE=𝒫V
10 9 difeq1d VWEX𝒫VtxVE=𝒫V
11 6 7 10 feq123d VWEXiEdgVE:domiEdgVE𝒫VtxVEE:domE𝒫V
12 5 11 bitrd VWEXVEUHGraphE:domE𝒫V