Metamath Proof Explorer


Theorem isum

Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)

Ref Expression
Hypotheses zsum.1 Z = M
zsum.2 φ M
isum.3 φ k Z F k = B
isum.4 φ k Z B
Assertion isum φ k Z B = seq M + F

Proof

Step Hyp Ref Expression
1 zsum.1 Z = M
2 zsum.2 φ M
3 isum.3 φ k Z F k = B
4 isum.4 φ k Z B
5 ssidd φ Z Z
6 iftrue k Z if k Z B 0 = B
7 6 adantl φ k Z if k Z B 0 = B
8 3 7 eqtr4d φ k Z F k = if k Z B 0
9 1 2 5 8 4 zsum φ k Z B = seq M + F