Step |
Hyp |
Ref |
Expression |
1 |
|
isum1p.1 |
|
2 |
|
isum1p.3 |
|
3 |
|
isum1p.4 |
|
4 |
|
isum1p.5 |
|
5 |
|
isum1p.6 |
|
6 |
|
eqid |
|
7 |
|
uzid |
|
8 |
2 7
|
syl |
|
9 |
|
peano2uz |
|
10 |
8 9
|
syl |
|
11 |
10 1
|
eleqtrrdi |
|
12 |
1 6 11 3 4 5
|
isumsplit |
|
13 |
2
|
zcnd |
|
14 |
|
ax-1cn |
|
15 |
|
pncan |
|
16 |
13 14 15
|
sylancl |
|
17 |
16
|
oveq2d |
|
18 |
17
|
sumeq1d |
|
19 |
|
elfzuz |
|
20 |
19 1
|
eleqtrrdi |
|
21 |
20 3
|
sylan2 |
|
22 |
21
|
sumeq2dv |
|
23 |
|
fveq2 |
|
24 |
23
|
eleq1d |
|
25 |
3 4
|
eqeltrd |
|
26 |
25
|
ralrimiva |
|
27 |
8 1
|
eleqtrrdi |
|
28 |
24 26 27
|
rspcdva |
|
29 |
23
|
fsum1 |
|
30 |
2 28 29
|
syl2anc |
|
31 |
18 22 30
|
3eqtr2d |
|
32 |
31
|
oveq1d |
|
33 |
12 32
|
eqtrd |
|