Metamath Proof Explorer


Theorem isumcl

Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z = M
isumcl.2 φ M
isumcl.3 φ k Z F k = A
isumcl.4 φ k Z A
isumcl.5 φ seq M + F dom
Assertion isumcl φ k Z A

Proof

Step Hyp Ref Expression
1 isumcl.1 Z = M
2 isumcl.2 φ M
3 isumcl.3 φ k Z F k = A
4 isumcl.4 φ k Z A
5 isumcl.5 φ seq M + F dom
6 1 2 3 4 isum φ k Z A = seq M + F
7 fclim : dom
8 ffvelrn : dom seq M + F dom seq M + F
9 7 5 8 sylancr φ seq M + F
10 6 9 eqeltrd φ k Z A