Metamath Proof Explorer


Theorem isumclim

Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1 Z = M
isumclim.2 φ M
isumclim.3 φ k Z F k = A
isumclim.4 φ k Z A
isumclim.6 φ seq M + F B
Assertion isumclim φ k Z A = B

Proof

Step Hyp Ref Expression
1 isumclim.1 Z = M
2 isumclim.2 φ M
3 isumclim.3 φ k Z F k = A
4 isumclim.4 φ k Z A
5 isumclim.6 φ seq M + F B
6 1 2 3 4 isum φ k Z A = seq M + F
7 fclim : dom
8 ffun : dom Fun
9 7 8 ax-mp Fun
10 funbrfv Fun seq M + F B seq M + F = B
11 9 5 10 mpsyl φ seq M + F = B
12 6 11 eqtrd φ k Z A = B