Metamath Proof Explorer


Theorem isumclim2

Description: A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1 Z = M
isumclim.2 φ M
isumclim.3 φ k Z F k = A
isumclim.4 φ k Z A
isumclim2.5 φ seq M + F dom
Assertion isumclim2 φ seq M + F k Z A

Proof

Step Hyp Ref Expression
1 isumclim.1 Z = M
2 isumclim.2 φ M
3 isumclim.3 φ k Z F k = A
4 isumclim.4 φ k Z A
5 isumclim2.5 φ seq M + F dom
6 climdm seq M + F dom seq M + F seq M + F
7 5 6 sylib φ seq M + F seq M + F
8 1 2 3 4 isum φ k Z A = seq M + F
9 7 8 breqtrrd φ seq M + F k Z A