Metamath Proof Explorer


Theorem isumclim3

Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that j must not occur in A . (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim3.1 Z = M
isumclim3.2 φ M
isumclim3.3 φ F dom
isumclim3.4 φ k Z A
isumclim3.5 φ j Z F j = k = M j A
Assertion isumclim3 φ F k Z A

Proof

Step Hyp Ref Expression
1 isumclim3.1 Z = M
2 isumclim3.2 φ M
3 isumclim3.3 φ F dom
4 isumclim3.4 φ k Z A
5 isumclim3.5 φ j Z F j = k = M j A
6 climdm F dom F F
7 3 6 sylib φ F F
8 sumfc m Z k Z A m = k Z A
9 eqidd φ m Z k Z A m = k Z A m
10 4 fmpttd φ k Z A : Z
11 10 ffvelrnda φ m Z k Z A m
12 1 2 9 11 isum φ m Z k Z A m = seq M + k Z A
13 8 12 eqtr3id φ k Z A = seq M + k Z A
14 seqex seq M + k Z A V
15 14 a1i φ seq M + k Z A V
16 fvres m M j k Z A M j m = k Z A m
17 fzssuz M j M
18 17 1 sseqtrri M j Z
19 resmpt M j Z k Z A M j = k M j A
20 18 19 ax-mp k Z A M j = k M j A
21 20 fveq1i k Z A M j m = k M j A m
22 16 21 eqtr3di m M j k Z A m = k M j A m
23 22 sumeq2i m = M j k Z A m = m = M j k M j A m
24 sumfc m = M j k M j A m = k = M j A
25 23 24 eqtri m = M j k Z A m = k = M j A
26 eqidd φ j Z m M j k Z A m = k Z A m
27 simpr φ j Z j Z
28 27 1 eleqtrdi φ j Z j M
29 simpl φ j Z φ
30 elfzuz m M j m M
31 30 1 eleqtrrdi m M j m Z
32 29 31 11 syl2an φ j Z m M j k Z A m
33 26 28 32 fsumser φ j Z m = M j k Z A m = seq M + k Z A j
34 25 33 eqtr3id φ j Z k = M j A = seq M + k Z A j
35 5 34 eqtr2d φ j Z seq M + k Z A j = F j
36 1 15 3 2 35 climeq φ seq M + k Z A x F x
37 36 iotabidv φ ι x | seq M + k Z A x = ι x | F x
38 df-fv seq M + k Z A = ι x | seq M + k Z A x
39 df-fv F = ι x | F x
40 37 38 39 3eqtr4g φ seq M + k Z A = F
41 13 40 eqtrd φ k Z A = F
42 7 41 breqtrrd φ F k Z A