Metamath Proof Explorer


Theorem isumdivc

Description: An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z = M
isumcl.2 φ M
isumcl.3 φ k Z F k = A
isumcl.4 φ k Z A
isumcl.5 φ seq M + F dom
summulc.6 φ B
isumdivc.7 φ B 0
Assertion isumdivc φ k Z A B = k Z A B

Proof

Step Hyp Ref Expression
1 isumcl.1 Z = M
2 isumcl.2 φ M
3 isumcl.3 φ k Z F k = A
4 isumcl.4 φ k Z A
5 isumcl.5 φ seq M + F dom
6 summulc.6 φ B
7 isumdivc.7 φ B 0
8 6 7 reccld φ 1 B
9 1 2 3 4 5 8 isummulc1 φ k Z A 1 B = k Z A 1 B
10 1 2 3 4 5 isumcl φ k Z A
11 10 6 7 divrecd φ k Z A B = k Z A 1 B
12 6 adantr φ k Z B
13 7 adantr φ k Z B 0
14 4 12 13 divrecd φ k Z A B = A 1 B
15 14 sumeq2dv φ k Z A B = k Z A 1 B
16 9 11 15 3eqtr4d φ k Z A B = k Z A B