Metamath Proof Explorer


Theorem isumge0

Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses isumrecl.1 Z = M
isumrecl.2 φ M
isumrecl.3 φ k Z F k = A
isumrecl.4 φ k Z A
isumrecl.5 φ seq M + F dom
isumge0.6 φ k Z 0 A
Assertion isumge0 φ 0 k Z A

Proof

Step Hyp Ref Expression
1 isumrecl.1 Z = M
2 isumrecl.2 φ M
3 isumrecl.3 φ k Z F k = A
4 isumrecl.4 φ k Z A
5 isumrecl.5 φ seq M + F dom
6 isumge0.6 φ k Z 0 A
7 4 recnd φ k Z A
8 1 2 3 7 5 isumclim2 φ seq M + F k Z A
9 fveq2 j = k F j = F k
10 9 cbvsumv j Z F j = k Z F k
11 3 sumeq2dv φ k Z F k = k Z A
12 10 11 eqtrid φ j Z F j = k Z A
13 8 12 breqtrrd φ seq M + F j Z F j
14 3 4 eqeltrd φ k Z F k
15 6 3 breqtrrd φ k Z 0 F k
16 1 2 13 14 15 iserge0 φ 0 j Z F j
17 16 12 breqtrd φ 0 k Z A