Metamath Proof Explorer


Theorem isumgrs

Description: The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V = Vtx G
isumgr.e E = iEdg G
Assertion isumgrs G U G UMGraph E : dom E x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 isumgr.v V = Vtx G
2 isumgr.e E = iEdg G
3 1 2 isumgr G U G UMGraph E : dom E x 𝒫 V | x = 2
4 prprrab x 𝒫 V | x = 2 = x 𝒫 V | x = 2
5 4 a1i G U x 𝒫 V | x = 2 = x 𝒫 V | x = 2
6 5 feq3d G U E : dom E x 𝒫 V | x = 2 E : dom E x 𝒫 V | x = 2
7 3 6 bitrd G U G UMGraph E : dom E x 𝒫 V | x = 2