Metamath Proof Explorer


Theorem isumle

Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumle.1 Z = M
isumle.2 φ M
isumle.3 φ k Z F k = A
isumle.4 φ k Z A
isumle.5 φ k Z G k = B
isumle.6 φ k Z B
isumle.7 φ k Z A B
isumle.8 φ seq M + F dom
isumle.9 φ seq M + G dom
Assertion isumle φ k Z A k Z B

Proof

Step Hyp Ref Expression
1 isumle.1 Z = M
2 isumle.2 φ M
3 isumle.3 φ k Z F k = A
4 isumle.4 φ k Z A
5 isumle.5 φ k Z G k = B
6 isumle.6 φ k Z B
7 isumle.7 φ k Z A B
8 isumle.8 φ seq M + F dom
9 isumle.9 φ seq M + G dom
10 climdm seq M + F dom seq M + F seq M + F
11 8 10 sylib φ seq M + F seq M + F
12 climdm seq M + G dom seq M + G seq M + G
13 9 12 sylib φ seq M + G seq M + G
14 3 4 eqeltrd φ k Z F k
15 5 6 eqeltrd φ k Z G k
16 7 3 5 3brtr4d φ k Z F k G k
17 1 2 11 13 14 15 16 iserle φ seq M + F seq M + G
18 4 recnd φ k Z A
19 1 2 3 18 isum φ k Z A = seq M + F
20 6 recnd φ k Z B
21 1 2 5 20 isum φ k Z B = seq M + G
22 17 19 21 3brtr4d φ k Z A k Z B