Metamath Proof Explorer


Theorem isumless

Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumless.1 Z = M
isumless.2 φ M
isumless.3 φ A Fin
isumless.4 φ A Z
isumless.5 φ k Z F k = B
isumless.6 φ k Z B
isumless.7 φ k Z 0 B
isumless.8 φ seq M + F dom
Assertion isumless φ k A B k Z B

Proof

Step Hyp Ref Expression
1 isumless.1 Z = M
2 isumless.2 φ M
3 isumless.3 φ A Fin
4 isumless.4 φ A Z
5 isumless.5 φ k Z F k = B
6 isumless.6 φ k Z B
7 isumless.7 φ k Z 0 B
8 isumless.8 φ seq M + F dom
9 4 sselda φ k A k Z
10 6 recnd φ k Z B
11 9 10 syldan φ k A B
12 11 ralrimiva φ k A B
13 1 eqimssi Z M
14 13 orci Z M Z Fin
15 14 a1i φ Z M Z Fin
16 sumss2 A Z k A B Z M Z Fin k A B = k Z if k A B 0
17 4 12 15 16 syl21anc φ k A B = k Z if k A B 0
18 eleq1w j = k j A k A
19 fveq2 j = k F j = F k
20 18 19 ifbieq1d j = k if j A F j 0 = if k A F k 0
21 eqid j Z if j A F j 0 = j Z if j A F j 0
22 fvex F k V
23 c0ex 0 V
24 22 23 ifex if k A F k 0 V
25 20 21 24 fvmpt k Z j Z if j A F j 0 k = if k A F k 0
26 25 adantl φ k Z j Z if j A F j 0 k = if k A F k 0
27 5 ifeq1d φ k Z if k A F k 0 = if k A B 0
28 26 27 eqtrd φ k Z j Z if j A F j 0 k = if k A B 0
29 0re 0
30 ifcl B 0 if k A B 0
31 6 29 30 sylancl φ k Z if k A B 0
32 leid B B B
33 breq1 B = if k A B 0 B B if k A B 0 B
34 breq1 0 = if k A B 0 0 B if k A B 0 B
35 33 34 ifboth B B 0 B if k A B 0 B
36 32 35 sylan B 0 B if k A B 0 B
37 6 7 36 syl2anc φ k Z if k A B 0 B
38 1 2 3 4 28 11 fsumcvg3 φ seq M + j Z if j A F j 0 dom
39 1 2 28 31 5 6 37 38 8 isumle φ k Z if k A B 0 k Z B
40 17 39 eqbrtrd φ k A B k Z B