Step |
Hyp |
Ref |
Expression |
1 |
|
isumltss.1 |
|
2 |
|
isumltss.2 |
|
3 |
|
isumltss.3 |
|
4 |
|
isumltss.4 |
|
5 |
|
isumltss.5 |
|
6 |
|
isumltss.6 |
|
7 |
|
isumltss.7 |
|
8 |
1
|
uzinf |
|
9 |
2 8
|
syl |
|
10 |
|
ssdif0 |
|
11 |
|
eqss |
|
12 |
|
eleq1 |
|
13 |
3 12
|
syl5ibcom |
|
14 |
11 13
|
syl5bir |
|
15 |
4 14
|
mpand |
|
16 |
10 15
|
syl5bir |
|
17 |
9 16
|
mtod |
|
18 |
|
neq0 |
|
19 |
17 18
|
sylib |
|
20 |
3
|
adantr |
|
21 |
4
|
adantr |
|
22 |
21
|
sselda |
|
23 |
6
|
adantlr |
|
24 |
23
|
rpred |
|
25 |
22 24
|
syldan |
|
26 |
20 25
|
fsumrecl |
|
27 |
|
snfi |
|
28 |
|
unfi |
|
29 |
20 27 28
|
sylancl |
|
30 |
|
eldifi |
|
31 |
30
|
snssd |
|
32 |
4 31
|
anim12i |
|
33 |
|
unss |
|
34 |
32 33
|
sylib |
|
35 |
34
|
sselda |
|
36 |
35 24
|
syldan |
|
37 |
29 36
|
fsumrecl |
|
38 |
2
|
adantr |
|
39 |
5
|
adantlr |
|
40 |
7
|
adantr |
|
41 |
1 38 39 24 40
|
isumrecl |
|
42 |
27
|
a1i |
|
43 |
|
vex |
|
44 |
43
|
snnz |
|
45 |
44
|
a1i |
|
46 |
31
|
adantl |
|
47 |
46
|
sselda |
|
48 |
47 23
|
syldan |
|
49 |
42 45 48
|
fsumrpcl |
|
50 |
26 49
|
ltaddrpd |
|
51 |
|
eldifn |
|
52 |
51
|
adantl |
|
53 |
|
disjsn |
|
54 |
52 53
|
sylibr |
|
55 |
|
eqidd |
|
56 |
23
|
rpcnd |
|
57 |
35 56
|
syldan |
|
58 |
54 55 29 57
|
fsumsplit |
|
59 |
50 58
|
breqtrrd |
|
60 |
23
|
rpge0d |
|
61 |
1 38 29 34 39 24 60 40
|
isumless |
|
62 |
26 37 41 59 61
|
ltletrd |
|
63 |
19 62
|
exlimddv |
|