Metamath Proof Explorer


Theorem isumltss

Description: A partial sum of a series with positive terms is less than the infinite sum. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Mar-2015)

Ref Expression
Hypotheses isumltss.1 Z = M
isumltss.2 φ M
isumltss.3 φ A Fin
isumltss.4 φ A Z
isumltss.5 φ k Z F k = B
isumltss.6 φ k Z B +
isumltss.7 φ seq M + F dom
Assertion isumltss φ k A B < k Z B

Proof

Step Hyp Ref Expression
1 isumltss.1 Z = M
2 isumltss.2 φ M
3 isumltss.3 φ A Fin
4 isumltss.4 φ A Z
5 isumltss.5 φ k Z F k = B
6 isumltss.6 φ k Z B +
7 isumltss.7 φ seq M + F dom
8 1 uzinf M ¬ Z Fin
9 2 8 syl φ ¬ Z Fin
10 ssdif0 Z A Z A =
11 eqss A = Z A Z Z A
12 eleq1 A = Z A Fin Z Fin
13 3 12 syl5ibcom φ A = Z Z Fin
14 11 13 syl5bir φ A Z Z A Z Fin
15 4 14 mpand φ Z A Z Fin
16 10 15 syl5bir φ Z A = Z Fin
17 9 16 mtod φ ¬ Z A =
18 neq0 ¬ Z A = x x Z A
19 17 18 sylib φ x x Z A
20 3 adantr φ x Z A A Fin
21 4 adantr φ x Z A A Z
22 21 sselda φ x Z A k A k Z
23 6 adantlr φ x Z A k Z B +
24 23 rpred φ x Z A k Z B
25 22 24 syldan φ x Z A k A B
26 20 25 fsumrecl φ x Z A k A B
27 snfi x Fin
28 unfi A Fin x Fin A x Fin
29 20 27 28 sylancl φ x Z A A x Fin
30 eldifi x Z A x Z
31 30 snssd x Z A x Z
32 4 31 anim12i φ x Z A A Z x Z
33 unss A Z x Z A x Z
34 32 33 sylib φ x Z A A x Z
35 34 sselda φ x Z A k A x k Z
36 35 24 syldan φ x Z A k A x B
37 29 36 fsumrecl φ x Z A k A x B
38 2 adantr φ x Z A M
39 5 adantlr φ x Z A k Z F k = B
40 7 adantr φ x Z A seq M + F dom
41 1 38 39 24 40 isumrecl φ x Z A k Z B
42 27 a1i φ x Z A x Fin
43 vex x V
44 43 snnz x
45 44 a1i φ x Z A x
46 31 adantl φ x Z A x Z
47 46 sselda φ x Z A k x k Z
48 47 23 syldan φ x Z A k x B +
49 42 45 48 fsumrpcl φ x Z A k x B +
50 26 49 ltaddrpd φ x Z A k A B < k A B + k x B
51 eldifn x Z A ¬ x A
52 51 adantl φ x Z A ¬ x A
53 disjsn A x = ¬ x A
54 52 53 sylibr φ x Z A A x =
55 eqidd φ x Z A A x = A x
56 23 rpcnd φ x Z A k Z B
57 35 56 syldan φ x Z A k A x B
58 54 55 29 57 fsumsplit φ x Z A k A x B = k A B + k x B
59 50 58 breqtrrd φ x Z A k A B < k A x B
60 23 rpge0d φ x Z A k Z 0 B
61 1 38 29 34 39 24 60 40 isumless φ x Z A k A x B k Z B
62 26 37 41 59 61 ltletrd φ x Z A k A B < k Z B
63 19 62 exlimddv φ k A B < k Z B