Metamath Proof Explorer


Theorem isummulc1

Description: An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z = M
isumcl.2 φ M
isumcl.3 φ k Z F k = A
isumcl.4 φ k Z A
isumcl.5 φ seq M + F dom
summulc.6 φ B
Assertion isummulc1 φ k Z A B = k Z A B

Proof

Step Hyp Ref Expression
1 isumcl.1 Z = M
2 isumcl.2 φ M
3 isumcl.3 φ k Z F k = A
4 isumcl.4 φ k Z A
5 isumcl.5 φ seq M + F dom
6 summulc.6 φ B
7 1 2 3 4 5 6 isummulc2 φ B k Z A = k Z B A
8 1 2 3 4 5 isumcl φ k Z A
9 8 6 mulcomd φ k Z A B = B k Z A
10 6 adantr φ k Z B
11 4 10 mulcomd φ k Z A B = B A
12 11 sumeq2dv φ k Z A B = k Z B A
13 7 9 12 3eqtr4d φ k Z A B = k Z A B