Metamath Proof Explorer


Theorem isummulc2

Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z = M
isumcl.2 φ M
isumcl.3 φ k Z F k = A
isumcl.4 φ k Z A
isumcl.5 φ seq M + F dom
summulc.6 φ B
Assertion isummulc2 φ B k Z A = k Z B A

Proof

Step Hyp Ref Expression
1 isumcl.1 Z = M
2 isumcl.2 φ M
3 isumcl.3 φ k Z F k = A
4 isumcl.4 φ k Z A
5 isumcl.5 φ seq M + F dom
6 summulc.6 φ B
7 sumfc m Z k Z B A m = k Z B A
8 eqidd φ m Z k Z B A m = k Z B A m
9 6 adantr φ k Z B
10 9 4 mulcld φ k Z B A
11 10 fmpttd φ k Z B A : Z
12 11 ffvelrnda φ m Z k Z B A m
13 1 2 3 4 5 isumclim2 φ seq M + F k Z A
14 3 4 eqeltrd φ k Z F k
15 14 ralrimiva φ k Z F k
16 fveq2 k = m F k = F m
17 16 eleq1d k = m F k F m
18 17 rspccva k Z F k m Z F m
19 15 18 sylan φ m Z F m
20 simpr φ k Z k Z
21 ovex B A V
22 eqid k Z B A = k Z B A
23 22 fvmpt2 k Z B A V k Z B A k = B A
24 20 21 23 sylancl φ k Z k Z B A k = B A
25 3 oveq2d φ k Z B F k = B A
26 24 25 eqtr4d φ k Z k Z B A k = B F k
27 26 ralrimiva φ k Z k Z B A k = B F k
28 nffvmpt1 _ k k Z B A m
29 28 nfeq1 k k Z B A m = B F m
30 fveq2 k = m k Z B A k = k Z B A m
31 16 oveq2d k = m B F k = B F m
32 30 31 eqeq12d k = m k Z B A k = B F k k Z B A m = B F m
33 29 32 rspc m Z k Z k Z B A k = B F k k Z B A m = B F m
34 27 33 mpan9 φ m Z k Z B A m = B F m
35 1 2 6 13 19 34 isermulc2 φ seq M + k Z B A B k Z A
36 1 2 8 12 35 isumclim φ m Z k Z B A m = B k Z A
37 7 36 syl5reqr φ B k Z A = k Z B A