Metamath Proof Explorer


Theorem isumneg

Description: Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses isumneg.1 Z = M
isumneg.2 φ M
isumneg.3 φ k Z A
isumneg.4 φ k Z F k = A
isumneg.5 φ k Z A
isumneg.6 φ seq M + F dom
Assertion isumneg φ k Z A = k Z A

Proof

Step Hyp Ref Expression
1 isumneg.1 Z = M
2 isumneg.2 φ M
3 isumneg.3 φ k Z A
4 isumneg.4 φ k Z F k = A
5 isumneg.5 φ k Z A
6 isumneg.6 φ seq M + F dom
7 5 mulm1d φ k Z -1 A = A
8 7 eqcomd φ k Z A = -1 A
9 8 sumeq2dv φ k Z A = k Z -1 A
10 1cnd φ 1
11 10 negcld φ 1
12 1 2 4 5 6 11 isummulc2 φ -1 k Z A = k Z -1 A
13 3 mulm1d φ -1 k Z A = k Z A
14 9 12 13 3eqtr2d φ k Z A = k Z A