Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
isumneg
Next ⟩
climrec
Metamath Proof Explorer
Ascii
Unicode
Theorem
isumneg
Description:
Negation of a converging sum.
(Contributed by
Glauco Siliprandi
, 29-Jun-2017)
Ref
Expression
Hypotheses
isumneg.1
⊢
Z
=
ℤ
≥
M
isumneg.2
⊢
φ
→
M
∈
ℤ
isumneg.3
⊢
φ
→
∑
k
∈
Z
A
∈
ℂ
isumneg.4
⊢
φ
∧
k
∈
Z
→
F
⁡
k
=
A
isumneg.5
⊢
φ
∧
k
∈
Z
→
A
∈
ℂ
isumneg.6
⊢
φ
→
seq
M
+
F
∈
dom
⁡
⇝
Assertion
isumneg
⊢
φ
→
∑
k
∈
Z
−
A
=
−
∑
k
∈
Z
A
Proof
Step
Hyp
Ref
Expression
1
isumneg.1
⊢
Z
=
ℤ
≥
M
2
isumneg.2
⊢
φ
→
M
∈
ℤ
3
isumneg.3
⊢
φ
→
∑
k
∈
Z
A
∈
ℂ
4
isumneg.4
⊢
φ
∧
k
∈
Z
→
F
⁡
k
=
A
5
isumneg.5
⊢
φ
∧
k
∈
Z
→
A
∈
ℂ
6
isumneg.6
⊢
φ
→
seq
M
+
F
∈
dom
⁡
⇝
7
5
mulm1d
⊢
φ
∧
k
∈
Z
→
-1
⁢
A
=
−
A
8
7
eqcomd
⊢
φ
∧
k
∈
Z
→
−
A
=
-1
⁢
A
9
8
sumeq2dv
⊢
φ
→
∑
k
∈
Z
−
A
=
∑
k
∈
Z
-1
⁢
A
10
1cnd
⊢
φ
→
1
∈
ℂ
11
10
negcld
⊢
φ
→
−
1
∈
ℂ
12
1
2
4
5
6
11
isummulc2
⊢
φ
→
-1
⁢
∑
k
∈
Z
A
=
∑
k
∈
Z
-1
⁢
A
13
3
mulm1d
⊢
φ
→
-1
⁢
∑
k
∈
Z
A
=
−
∑
k
∈
Z
A
14
9
12
13
3eqtr2d
⊢
φ
→
∑
k
∈
Z
−
A
=
−
∑
k
∈
Z
A