Metamath Proof Explorer


Theorem isumneg

Description: Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses isumneg.1 Z=M
isumneg.2 φM
isumneg.3 φkZA
isumneg.4 φkZFk=A
isumneg.5 φkZA
isumneg.6 φseqM+Fdom
Assertion isumneg φkZA=kZA

Proof

Step Hyp Ref Expression
1 isumneg.1 Z=M
2 isumneg.2 φM
3 isumneg.3 φkZA
4 isumneg.4 φkZFk=A
5 isumneg.5 φkZA
6 isumneg.6 φseqM+Fdom
7 5 mulm1d φkZ-1A=A
8 7 eqcomd φkZA=-1A
9 8 sumeq2dv φkZA=kZ-1A
10 1cnd φ1
11 10 negcld φ1
12 1 2 4 5 6 11 isummulc2 φ-1kZA=kZ-1A
13 3 mulm1d φ-1kZA=kZA
14 9 12 13 3eqtr2d φkZA=kZA