Metamath Proof Explorer


Theorem isumrecl

Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumrecl.1 Z = M
isumrecl.2 φ M
isumrecl.3 φ k Z F k = A
isumrecl.4 φ k Z A
isumrecl.5 φ seq M + F dom
Assertion isumrecl φ k Z A

Proof

Step Hyp Ref Expression
1 isumrecl.1 Z = M
2 isumrecl.2 φ M
3 isumrecl.3 φ k Z F k = A
4 isumrecl.4 φ k Z A
5 isumrecl.5 φ seq M + F dom
6 4 recnd φ k Z A
7 1 2 3 6 5 isumclim2 φ seq M + F k Z A
8 3 4 eqeltrd φ k Z F k
9 1 2 8 serfre φ seq M + F : Z
10 9 ffvelrnda φ j Z seq M + F j
11 1 2 7 10 climrecl φ k Z A