Step |
Hyp |
Ref |
Expression |
1 |
|
isumshft.1 |
|
2 |
|
isumshft.2 |
|
3 |
|
isumshft.3 |
|
4 |
|
isumshft.4 |
|
5 |
|
isumshft.5 |
|
6 |
|
isumshft.6 |
|
7 |
5 4
|
zaddcld |
|
8 |
2
|
eleq2i |
|
9 |
4
|
zcnd |
|
10 |
|
eluzelcn |
|
11 |
10 2
|
eleq2s |
|
12 |
1
|
fvexi |
|
13 |
12
|
mptex |
|
14 |
13
|
shftval |
|
15 |
9 11 14
|
syl2an |
|
16 |
|
simpr |
|
17 |
|
eqid |
|
18 |
17
|
fvmpt2i |
|
19 |
16 18
|
syl |
|
20 |
|
eluzelcn |
|
21 |
20 1
|
eleq2s |
|
22 |
|
addcom |
|
23 |
9 21 22
|
syl2an |
|
24 |
|
id |
|
25 |
24 1
|
eleqtrdi |
|
26 |
|
eluzadd |
|
27 |
25 4 26
|
syl2anr |
|
28 |
23 27
|
eqeltrd |
|
29 |
28 2
|
eleqtrrdi |
|
30 |
|
eqid |
|
31 |
3 30
|
fvmpti |
|
32 |
29 31
|
syl |
|
33 |
19 32
|
eqtr4d |
|
34 |
33
|
ralrimiva |
|
35 |
|
nffvmpt1 |
|
36 |
35
|
nfeq1 |
|
37 |
|
fveq2 |
|
38 |
|
oveq2 |
|
39 |
38
|
fveq2d |
|
40 |
37 39
|
eqeq12d |
|
41 |
36 40
|
rspc |
|
42 |
34 41
|
mpan9 |
|
43 |
42
|
ralrimiva |
|
44 |
5
|
adantr |
|
45 |
4
|
adantr |
|
46 |
|
simpr |
|
47 |
46 2
|
eleqtrdi |
|
48 |
|
eluzsub |
|
49 |
44 45 47 48
|
syl3anc |
|
50 |
49 1
|
eleqtrrdi |
|
51 |
|
fveq2 |
|
52 |
|
oveq2 |
|
53 |
52
|
fveq2d |
|
54 |
51 53
|
eqeq12d |
|
55 |
54
|
rspccva |
|
56 |
43 50 55
|
syl2an2r |
|
57 |
|
pncan3 |
|
58 |
9 11 57
|
syl2an |
|
59 |
58
|
fveq2d |
|
60 |
15 56 59
|
3eqtrrd |
|
61 |
8 60
|
sylan2br |
|
62 |
7 61
|
seqfeq |
|
63 |
62
|
breq1d |
|
64 |
13
|
isershft |
|
65 |
5 4 64
|
syl2anc |
|
66 |
63 65
|
bitr4d |
|
67 |
66
|
iotabidv |
|
68 |
|
df-fv |
|
69 |
|
df-fv |
|
70 |
67 68 69
|
3eqtr4g |
|
71 |
|
eqidd |
|
72 |
6
|
fmpttd |
|
73 |
72
|
ffvelrnda |
|
74 |
2 7 71 73
|
isum |
|
75 |
|
eqidd |
|
76 |
29
|
ralrimiva |
|
77 |
38
|
eleq1d |
|
78 |
77
|
rspccva |
|
79 |
76 78
|
sylan |
|
80 |
|
ffvelrn |
|
81 |
72 79 80
|
syl2an2r |
|
82 |
42 81
|
eqeltrd |
|
83 |
1 5 75 82
|
isum |
|
84 |
70 74 83
|
3eqtr4d |
|
85 |
|
sumfc |
|
86 |
|
sumfc |
|
87 |
84 85 86
|
3eqtr3g |
|