Step |
Hyp |
Ref |
Expression |
1 |
|
isumsplit.1 |
|
2 |
|
isumsplit.2 |
|
3 |
|
isumsplit.3 |
|
4 |
|
isumsplit.4 |
|
5 |
|
isumsplit.5 |
|
6 |
|
isumsplit.6 |
|
7 |
3 1
|
eleqtrdi |
|
8 |
|
eluzel2 |
|
9 |
7 8
|
syl |
|
10 |
|
eluzelz |
|
11 |
7 10
|
syl |
|
12 |
|
uzss |
|
13 |
7 12
|
syl |
|
14 |
13 2 1
|
3sstr4g |
|
15 |
14
|
sselda |
|
16 |
15 4
|
syldan |
|
17 |
15 5
|
syldan |
|
18 |
4 5
|
eqeltrd |
|
19 |
1 3 18
|
iserex |
|
20 |
6 19
|
mpbid |
|
21 |
2 11 16 17 20
|
isumclim2 |
|
22 |
|
fzfid |
|
23 |
|
elfzuz |
|
24 |
23 1
|
eleqtrrdi |
|
25 |
24 5
|
sylan2 |
|
26 |
22 25
|
fsumcl |
|
27 |
15 18
|
syldan |
|
28 |
2 11 27
|
serf |
|
29 |
28
|
ffvelrnda |
|
30 |
9
|
zred |
|
31 |
30
|
ltm1d |
|
32 |
|
peano2zm |
|
33 |
|
fzn |
|
34 |
9 32 33
|
syl2anc2 |
|
35 |
31 34
|
mpbid |
|
36 |
35
|
sumeq1d |
|
37 |
36
|
adantr |
|
38 |
|
sum0 |
|
39 |
37 38
|
eqtrdi |
|
40 |
39
|
oveq1d |
|
41 |
14
|
sselda |
|
42 |
1 9 18
|
serf |
|
43 |
42
|
ffvelrnda |
|
44 |
41 43
|
syldan |
|
45 |
44
|
addid2d |
|
46 |
40 45
|
eqtr2d |
|
47 |
|
oveq1 |
|
48 |
47
|
oveq2d |
|
49 |
48
|
sumeq1d |
|
50 |
|
seqeq1 |
|
51 |
50
|
fveq1d |
|
52 |
49 51
|
oveq12d |
|
53 |
52
|
eqeq2d |
|
54 |
46 53
|
syl5ibrcom |
|
55 |
|
addcl |
|
56 |
55
|
adantl |
|
57 |
|
addass |
|
58 |
57
|
adantl |
|
59 |
|
simplr |
|
60 |
|
simpll |
|
61 |
11
|
zcnd |
|
62 |
|
ax-1cn |
|
63 |
|
npcan |
|
64 |
61 62 63
|
sylancl |
|
65 |
64
|
eqcomd |
|
66 |
60 65
|
syl |
|
67 |
66
|
fveq2d |
|
68 |
2 67
|
eqtrid |
|
69 |
59 68
|
eleqtrd |
|
70 |
9
|
adantr |
|
71 |
|
eluzp1m1 |
|
72 |
70 71
|
sylan |
|
73 |
|
elfzuz |
|
74 |
73 1
|
eleqtrrdi |
|
75 |
60 74 18
|
syl2an |
|
76 |
56 58 69 72 75
|
seqsplit |
|
77 |
60 24 4
|
syl2an |
|
78 |
60 24 5
|
syl2an |
|
79 |
77 72 78
|
fsumser |
|
80 |
66
|
seqeq1d |
|
81 |
80
|
fveq1d |
|
82 |
79 81
|
oveq12d |
|
83 |
76 82
|
eqtr4d |
|
84 |
83
|
ex |
|
85 |
|
uzp1 |
|
86 |
7 85
|
syl |
|
87 |
86
|
adantr |
|
88 |
54 84 87
|
mpjaod |
|
89 |
2 11 21 26 6 29 88
|
climaddc2 |
|
90 |
1 9 4 5 89
|
isumclim |
|