Metamath Proof Explorer


Theorem isumsplit

Description: Split off the first N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumsplit.1 Z = M
isumsplit.2 W = N
isumsplit.3 φ N Z
isumsplit.4 φ k Z F k = A
isumsplit.5 φ k Z A
isumsplit.6 φ seq M + F dom
Assertion isumsplit φ k Z A = k = M N 1 A + k W A

Proof

Step Hyp Ref Expression
1 isumsplit.1 Z = M
2 isumsplit.2 W = N
3 isumsplit.3 φ N Z
4 isumsplit.4 φ k Z F k = A
5 isumsplit.5 φ k Z A
6 isumsplit.6 φ seq M + F dom
7 3 1 eleqtrdi φ N M
8 eluzel2 N M M
9 7 8 syl φ M
10 eluzelz N M N
11 7 10 syl φ N
12 uzss N M N M
13 7 12 syl φ N M
14 13 2 1 3sstr4g φ W Z
15 14 sselda φ k W k Z
16 15 4 syldan φ k W F k = A
17 15 5 syldan φ k W A
18 4 5 eqeltrd φ k Z F k
19 1 3 18 iserex φ seq M + F dom seq N + F dom
20 6 19 mpbid φ seq N + F dom
21 2 11 16 17 20 isumclim2 φ seq N + F k W A
22 fzfid φ M N 1 Fin
23 elfzuz k M N 1 k M
24 23 1 eleqtrrdi k M N 1 k Z
25 24 5 sylan2 φ k M N 1 A
26 22 25 fsumcl φ k = M N 1 A
27 15 18 syldan φ k W F k
28 2 11 27 serf φ seq N + F : W
29 28 ffvelrnda φ j W seq N + F j
30 9 zred φ M
31 30 ltm1d φ M 1 < M
32 peano2zm M M 1
33 fzn M M 1 M 1 < M M M 1 =
34 9 32 33 syl2anc2 φ M 1 < M M M 1 =
35 31 34 mpbid φ M M 1 =
36 35 sumeq1d φ k = M M 1 A = k A
37 36 adantr φ j W k = M M 1 A = k A
38 sum0 k A = 0
39 37 38 eqtrdi φ j W k = M M 1 A = 0
40 39 oveq1d φ j W k = M M 1 A + seq M + F j = 0 + seq M + F j
41 14 sselda φ j W j Z
42 1 9 18 serf φ seq M + F : Z
43 42 ffvelrnda φ j Z seq M + F j
44 41 43 syldan φ j W seq M + F j
45 44 addid2d φ j W 0 + seq M + F j = seq M + F j
46 40 45 eqtr2d φ j W seq M + F j = k = M M 1 A + seq M + F j
47 oveq1 N = M N 1 = M 1
48 47 oveq2d N = M M N 1 = M M 1
49 48 sumeq1d N = M k = M N 1 A = k = M M 1 A
50 seqeq1 N = M seq N + F = seq M + F
51 50 fveq1d N = M seq N + F j = seq M + F j
52 49 51 oveq12d N = M k = M N 1 A + seq N + F j = k = M M 1 A + seq M + F j
53 52 eqeq2d N = M seq M + F j = k = M N 1 A + seq N + F j seq M + F j = k = M M 1 A + seq M + F j
54 46 53 syl5ibrcom φ j W N = M seq M + F j = k = M N 1 A + seq N + F j
55 addcl k m k + m
56 55 adantl φ j W N M + 1 k m k + m
57 addass k m x k + m + x = k + m + x
58 57 adantl φ j W N M + 1 k m x k + m + x = k + m + x
59 simplr φ j W N M + 1 j W
60 simpll φ j W N M + 1 φ
61 11 zcnd φ N
62 ax-1cn 1
63 npcan N 1 N - 1 + 1 = N
64 61 62 63 sylancl φ N - 1 + 1 = N
65 64 eqcomd φ N = N - 1 + 1
66 60 65 syl φ j W N M + 1 N = N - 1 + 1
67 66 fveq2d φ j W N M + 1 N = N - 1 + 1
68 2 67 eqtrid φ j W N M + 1 W = N - 1 + 1
69 59 68 eleqtrd φ j W N M + 1 j N - 1 + 1
70 9 adantr φ j W M
71 eluzp1m1 M N M + 1 N 1 M
72 70 71 sylan φ j W N M + 1 N 1 M
73 elfzuz k M j k M
74 73 1 eleqtrrdi k M j k Z
75 60 74 18 syl2an φ j W N M + 1 k M j F k
76 56 58 69 72 75 seqsplit φ j W N M + 1 seq M + F j = seq M + F N 1 + seq N - 1 + 1 + F j
77 60 24 4 syl2an φ j W N M + 1 k M N 1 F k = A
78 60 24 5 syl2an φ j W N M + 1 k M N 1 A
79 77 72 78 fsumser φ j W N M + 1 k = M N 1 A = seq M + F N 1
80 66 seqeq1d φ j W N M + 1 seq N + F = seq N - 1 + 1 + F
81 80 fveq1d φ j W N M + 1 seq N + F j = seq N - 1 + 1 + F j
82 79 81 oveq12d φ j W N M + 1 k = M N 1 A + seq N + F j = seq M + F N 1 + seq N - 1 + 1 + F j
83 76 82 eqtr4d φ j W N M + 1 seq M + F j = k = M N 1 A + seq N + F j
84 83 ex φ j W N M + 1 seq M + F j = k = M N 1 A + seq N + F j
85 uzp1 N M N = M N M + 1
86 7 85 syl φ N = M N M + 1
87 86 adantr φ j W N = M N M + 1
88 54 84 87 mpjaod φ j W seq M + F j = k = M N 1 A + seq N + F j
89 2 11 21 26 6 29 88 climaddc2 φ seq M + F k = M N 1 A + k W A
90 1 9 4 5 89 isumclim φ k Z A = k = M N 1 A + k W A