Metamath Proof Explorer


Theorem isumsup

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1 Z = M
isumsup.2 G = seq M + F
isumsup.3 φ M
isumsup.4 φ k Z F k = A
isumsup.5 φ k Z A
isumsup.6 φ k Z 0 A
isumsup.7 φ x j Z G j x
Assertion isumsup φ k Z A = sup ran G <

Proof

Step Hyp Ref Expression
1 isumsup.1 Z = M
2 isumsup.2 G = seq M + F
3 isumsup.3 φ M
4 isumsup.4 φ k Z F k = A
5 isumsup.5 φ k Z A
6 isumsup.6 φ k Z 0 A
7 isumsup.7 φ x j Z G j x
8 5 recnd φ k Z A
9 1 2 3 4 5 6 7 isumsup2 φ G sup ran G <
10 2 9 eqbrtrrid φ seq M + F sup ran G <
11 1 3 4 8 10 isumclim φ k Z A = sup ran G <