Metamath Proof Explorer


Theorem isumsup2

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1 Z = M
isumsup.2 G = seq M + F
isumsup.3 φ M
isumsup.4 φ k Z F k = A
isumsup.5 φ k Z A
isumsup.6 φ k Z 0 A
isumsup.7 φ x j Z G j x
Assertion isumsup2 φ G sup ran G <

Proof

Step Hyp Ref Expression
1 isumsup.1 Z = M
2 isumsup.2 G = seq M + F
3 isumsup.3 φ M
4 isumsup.4 φ k Z F k = A
5 isumsup.5 φ k Z A
6 isumsup.6 φ k Z 0 A
7 isumsup.7 φ x j Z G j x
8 4 5 eqeltrd φ k Z F k
9 1 3 8 serfre φ seq M + F : Z
10 2 feq1i G : Z seq M + F : Z
11 9 10 sylibr φ G : Z
12 simpr φ j Z j Z
13 12 1 eleqtrdi φ j Z j M
14 eluzelz j M j
15 uzid j j j
16 peano2uz j j j + 1 j
17 13 14 15 16 4syl φ j Z j + 1 j
18 simpl φ j Z φ
19 elfzuz k M j + 1 k M
20 19 1 eleqtrrdi k M j + 1 k Z
21 18 20 8 syl2an φ j Z k M j + 1 F k
22 1 peano2uzs j Z j + 1 Z
23 22 adantl φ j Z j + 1 Z
24 elfzuz k j + 1 j + 1 k j + 1
25 1 uztrn2 j + 1 Z k j + 1 k Z
26 23 24 25 syl2an φ j Z k j + 1 j + 1 k Z
27 6 4 breqtrrd φ k Z 0 F k
28 27 adantlr φ j Z k Z 0 F k
29 26 28 syldan φ j Z k j + 1 j + 1 0 F k
30 13 17 21 29 sermono φ j Z seq M + F j seq M + F j + 1
31 2 fveq1i G j = seq M + F j
32 2 fveq1i G j + 1 = seq M + F j + 1
33 30 31 32 3brtr4g φ j Z G j G j + 1
34 1 3 11 33 7 climsup φ G sup ran G <