Metamath Proof Explorer


Theorem isusgrs

Description: The property of being a simple graph, simplified version of isusgr . (Contributed by Alexander van der Vekens, 13-Aug-2017) (Revised by AV, 13-Oct-2020) (Proof shortened by AV, 24-Nov-2020)

Ref Expression
Hypotheses isuspgr.v V = Vtx G
isuspgr.e E = iEdg G
Assertion isusgrs G U G USGraph E : dom E 1-1 x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 isuspgr.v V = Vtx G
2 isuspgr.e E = iEdg G
3 1 2 isusgr G U G USGraph E : dom E 1-1 x 𝒫 V | x = 2
4 prprrab x 𝒫 V | x = 2 = x 𝒫 V | x = 2
5 f1eq3 x 𝒫 V | x = 2 = x 𝒫 V | x = 2 E : dom E 1-1 x 𝒫 V | x = 2 E : dom E 1-1 x 𝒫 V | x = 2
6 4 5 mp1i G U E : dom E 1-1 x 𝒫 V | x = 2 E : dom E 1-1 x 𝒫 V | x = 2
7 3 6 bitrd G U G USGraph E : dom E 1-1 x 𝒫 V | x = 2