Metamath Proof Explorer


Theorem isuvtx

Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypotheses uvtxel.v V = Vtx G
isuvtx.e E = Edg G
Assertion isuvtx UnivVtx G = v V | k V v e E k v e

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 isuvtx.e E = Edg G
3 1 uvtxval UnivVtx G = v V | k V v k G NeighbVtx v
4 1 2 nbgrel k G NeighbVtx v k V v V k v e E v k e
5 df-3an k V v V k v e E v k e k V v V k v e E v k e
6 4 5 bitri k G NeighbVtx v k V v V k v e E v k e
7 prcom k v = v k
8 7 sseq1i k v e v k e
9 8 rexbii e E k v e e E v k e
10 id v V v V
11 eldifi k V v k V
12 10 11 anim12ci v V k V v k V v V
13 eldifsni k V v k v
14 13 adantl v V k V v k v
15 12 14 jca v V k V v k V v V k v
16 15 biantrurd v V k V v e E v k e k V v V k v e E v k e
17 9 16 bitr2id v V k V v k V v V k v e E v k e e E k v e
18 6 17 syl5bb v V k V v k G NeighbVtx v e E k v e
19 18 ralbidva v V k V v k G NeighbVtx v k V v e E k v e
20 19 rabbiia v V | k V v k G NeighbVtx v = v V | k V v e E k v e
21 3 20 eqtri UnivVtx G = v V | k V v e E k v e