Metamath Proof Explorer


Theorem iswatN

Description: The predicate "is a W atom" (corresponding to fiducial atom D ). (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses watomfval.a A = Atoms K
watomfval.p P = 𝑃 K
watomfval.w W = WAtoms K
Assertion iswatN K B D A P W D P A ¬ P 𝑃 K D

Proof

Step Hyp Ref Expression
1 watomfval.a A = Atoms K
2 watomfval.p P = 𝑃 K
3 watomfval.w W = WAtoms K
4 1 2 3 watvalN K B D A W D = A 𝑃 K D
5 4 eleq2d K B D A P W D P A 𝑃 K D
6 eldif P A 𝑃 K D P A ¬ P 𝑃 K D
7 5 6 bitrdi K B D A P W D P A ¬ P 𝑃 K D