Metamath Proof Explorer


Theorem iswlk

Description: Properties of a pair of functions to be a walk. (Contributed by AV, 30-Dec-2020)

Ref Expression
Hypotheses wksfval.v V = Vtx G
wksfval.i I = iEdg G
Assertion iswlk G W F U P Z F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k

Proof

Step Hyp Ref Expression
1 wksfval.v V = Vtx G
2 wksfval.i I = iEdg G
3 df-br F Walks G P F P Walks G
4 1 2 wksfval G W Walks G = f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k
5 4 3ad2ant1 G W F U P Z Walks G = f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k
6 5 eleq2d G W F U P Z F P Walks G F P f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k
7 3 6 syl5bb G W F U P Z F Walks G P F P f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k
8 eleq1 f = F f Word dom I F Word dom I
9 8 adantr f = F p = P f Word dom I F Word dom I
10 simpr f = F p = P p = P
11 fveq2 f = F f = F
12 11 oveq2d f = F 0 f = 0 F
13 12 adantr f = F p = P 0 f = 0 F
14 10 13 feq12d f = F p = P p : 0 f V P : 0 F V
15 11 oveq2d f = F 0 ..^ f = 0 ..^ F
16 15 adantr f = F p = P 0 ..^ f = 0 ..^ F
17 fveq1 p = P p k = P k
18 fveq1 p = P p k + 1 = P k + 1
19 17 18 eqeq12d p = P p k = p k + 1 P k = P k + 1
20 19 adantl f = F p = P p k = p k + 1 P k = P k + 1
21 fveq1 f = F f k = F k
22 21 fveq2d f = F I f k = I F k
23 17 sneqd p = P p k = P k
24 22 23 eqeqan12d f = F p = P I f k = p k I F k = P k
25 17 18 preq12d p = P p k p k + 1 = P k P k + 1
26 25 adantl f = F p = P p k p k + 1 = P k P k + 1
27 22 adantr f = F p = P I f k = I F k
28 26 27 sseq12d f = F p = P p k p k + 1 I f k P k P k + 1 I F k
29 20 24 28 ifpbi123d f = F p = P if- p k = p k + 1 I f k = p k p k p k + 1 I f k if- P k = P k + 1 I F k = P k P k P k + 1 I F k
30 16 29 raleqbidv f = F p = P k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
31 9 14 30 3anbi123d f = F p = P f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
32 31 opelopabga F U P Z F P f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
33 32 3adant1 G W F U P Z F P f p | f Word dom I p : 0 f V k 0 ..^ f if- p k = p k + 1 I f k = p k p k p k + 1 I f k F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
34 7 33 bitrd G W F U P Z F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k