Metamath Proof Explorer


Theorem iswrd

Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion iswrd W Word S l 0 W : 0 ..^ l S

Proof

Step Hyp Ref Expression
1 df-word Word S = w | l 0 w : 0 ..^ l S
2 1 eleq2i W Word S W w | l 0 w : 0 ..^ l S
3 ovex 0 ..^ l V
4 fex W : 0 ..^ l S 0 ..^ l V W V
5 3 4 mpan2 W : 0 ..^ l S W V
6 5 rexlimivw l 0 W : 0 ..^ l S W V
7 feq1 w = W w : 0 ..^ l S W : 0 ..^ l S
8 7 rexbidv w = W l 0 w : 0 ..^ l S l 0 W : 0 ..^ l S
9 6 8 elab3 W w | l 0 w : 0 ..^ l S l 0 W : 0 ..^ l S
10 2 9 bitri W Word S l 0 W : 0 ..^ l S